BOUND STATE SOLUTIONS TO THE SCHRÖDINGER EQUATION FOR SELECTED DIATOMIC MOLECULES

Authors

  • E. P. Inyang Department of Physics, National Open University of Nigeria, Jabi-Abuja, Nigeria Author
  • E .S. William Theoretical Physics Group, Department of Physics, University of Calabar, P.M.B 1115, Calabar, Nigeria Author
  • E. A. Ibanga Department of Physics, National Open University of Nigeria, Jabi-Abuja, Nigeria Author
  • J.E. Ntibi Theoretical Physics Group, Department of Physics, University of Calabar, P.M.B 1115, Calabar, Nigeria Author
  • O. O. Akintola Department of Chemistry, National Open University of Nigeria, Jabi-Abuja, Nigeria Author

Keywords:

Diatomic molecules, class of inversely quadratic plus Hulthén potential, Nikiforov-Uvarov method, Schrödinger equation

Abstract

In this study, the solutions of the Schrödinger equation are obtained with a class of inversely quadratic plus Hulthén potential models using the Nikiforov-Uvarov method with an approximation to the centrifugal term. We obtained the energy eigenvalue equation and normalized wave function. The energy equation was used to compute the numerical bound state for selected diatomic molecules (N 2, O2, NO, and CO) for different rotational and vibrational quantum numbers utilizing their corresponding spectroscopic data. Our findings demonstrate that the energy eigenvalues are highly sensitive to the potential and diatomic molecule characteristics, with no divergence between the l -wave and s -wave, implying that the approximation scheme is well suited for these set of potentials. We also found eight special cases of this potential, and the results are consistent with previous reports in the literature.

         Views | Downloads: 110 / 33

Downloads

Download data is not yet available.

References

Horchani R, Al-Aamri H, Al-Kindi N, Ikot AN, Okorie, US, Rampho GJ, Jelassi H (2021) Energy spectra and magnetic properties of diatomic molecules in the presence of magnetic and AB fields with the inversely quadratic Yukawa potential. Eur. Phys. J. D 75:36

Oyewumi KJ, Oluwadare OJ, Sen KD, Babalola OA (2013) Bound state solutions of the Deng Fan molecular potential with the Pekeris-type approximation using the Nikiforov–Uvarov (N–U) method. J. Math. Chem. 51, 976:10.

Onate CA, Onyeaju MC, Omugbe E, Okon I B, Osafile OE (2021) Bound-state solutions and thermal properties of the modifed Tietz–Hua potential. Sci Rep 11:2129

Edet CO, Okoi PO (2019) Any l-state solutions of the Schrodinger equation for q-deformed Hulthen plus generalized inverse quadratic Yukawa potential in arbitrary dimensions. Rev. Mex. Fis. 65:333

Ukewuihe UM, Onyenegecha CP, Udensi SC, Nwokocha CO, Okereke CJ, Njoku IJ, Illoanya AC (2021) Approximate solutions of Schrodinger equation in D Dimensions with the modified Mobius square plus Hulthen potential. Mathematics and computational science 1:3

Dong S, Dong S H (2002) Schrodinger equation with a coulomb field in 2+1 dimensions. Phys. Scr. 66

Berkdermir C, Berkdemir A, Sever R (2008) Polynomial solutions of the Schrodinger equation for the generalized Woods-Saxon potential. Phys. Rev. C 72:027001

Flugge S (1971) Practical quantum mechanics II. Berlin: springer.

Ikhdair S M (2011) The bound state solutions of the Manning-Rosen potential including an improved approximation to the orbital centrifugal term. Phys. Scr. 83:1

Lu J (2005) Approximate spin and pseudospin solutions of the Dirac equation. Phys. Scr. 72:349.

Greene RL, Aldrich C (1976) Variational wave functions for a screened Coulomb potential, Phys. Rev. A 14: 2363

Jia CS, Chen T, Cui and LG (2009) Approximate analytical solutions of the Dirac equation with the generalized P¨oschl- Teller potential including the pseudo-centrifugal term, Phys. Lett. A 373:1621

Hill EL (1954) The Theory of Vector Spherical Harmonics, Am. J. Phys. 22:211

Pekeris C L (1934) The Rotation-Vibration Coupling in Diatomic Molecules. Phys. Rev. 45:98

Yazarloo BH, Hassanabadi H, Zarrinkamar S (2012) Oscillator strengths based on the Mobius square potential under Schrodinger equation. Eur. Phys. J. Plus 127: 51

Dong SH, Qiang WC, Sun GH, Bezerra V B (2007) Analytical approximations to the l-wave solutions of the Schr¨odinger equation with the Eckart potential. J. Phys. A 40: 10535

Nikiforov AF, Uvarov VB (1988) Functions of Mathematical Physics. Birkhauser, Basel

Antia AD, Umo EE, Umoren CC (2015) Solutions of non relativistic Schrodinger equation with Hulthén -Yukawa plus angle dependent potential within the framework of Nikiforov- Uvarov method, J. Theor. Phys. Crypt, 10:1

Onate CA, Ebomwonyi O, Dopamu KO, Okoro JO , Oluwayemi MO, (2018) Eigen solutions of the D-Dimensional Schrçdinger Equation with inverse Trigonometry scarf Potential and Coulomb Potential. Chin. J. Phys. 56:5

Inyang EP, Inyang EP, Akpan IO, Ntibi JE, William ES ( 2020) Analytical solutions of the Schrödinger equation with class of Yukawa potential for a quarkonium system via series expansion method. EJ. Physics 2:26

Inyang EP, Inyang EP, William ES, Ibekwe EE (2021) Study on the applicability of Varshni potential to predict the mass-spectra of the Quark-Antiquark systems in a non-relativistic framework Jordan Journal of Physics. 14:4

Abu-Shady M (2015) Analytic solution of Dirac Equation for extended Cornell Potential using the Nikiforov-Uvarov method. Boson J. mod. phys. 55:1

Ikhdair SM, Sever R (2010) Approximate bound state solutions of Dirac equation with Hulthén potential including Coulomb-like tensor potential. Appl. Math. Comput. 216

Inyang EP, Inyang EP, Ntibi JE, William ES (2021)Analytical Solutions of the Schrödinger Equation with Kratzer-screened Coulomb Potential for a Quarkonium System. Bull. pure appl. sci. sec.. 40:1

Akpan IO, Inyang EP, InyangEP, William ES (2021) Approximate solutions of the Schrödinger equation with Hulthén-Hellman potentials for a Quarkonium system. Rev. Mex. de Fis. 67:3

Ikot AN, Okorie U S, Ngiagian A T, Onate CA, Edet CO, Akpan IO, Amadi P O (2020) Bound state solutions of the Schrödinger equation with energy-dependent molecular Kratzer potential via Asymptotic iteration method. Ecletica Quimica Journal 45:1

Ekpo CM, Inyang EP, Okoi PO, Magu TO, Agbo EP, Okorie KO, Inyang EP (2020) New Generalized MorseLike potential for studying the Atomic interaction in Diatomic Molecules. http://arXiv:2012.0258.

Ntibi JE, Inyang EP, Inyang EP, William ES (2020) Relativistic Treatment of D-Dimensional Klien-Gordon equation with Yukawa potential. Int. J. innov. res. sci. eng. Technol. 11:7

Inyang, Williams, Ibanga, Ntibi and Akintola J. of NAMP Ita BI, Hitler L, Akakuru OU, Nzeata-Ibe NA, Ikeuba AI, Magu TO, Amos PI, Edet CO (2018) Approximate Solution to the Schrödinger Equati n with Manning-Rosen plus a Class of Yukawa Potential via WKBJ Approximation Method. Bulg. J. Phys. 45:323

Inyang EP, Inyang EP, Ntibi JE, Ibekwe EE, William ES (2021) Approximate solutions of D-dimensional Klein-Gordon equation with Yukawa potential via Nikiforov-Uvarov method”. Indian Journal of Physics

Edet CO, Ikot AN (2021) Shannon information entropy in the presence of magnetic and Aharanov–Bohm (AB) fields. Eur. Phys. J. Plus 136: 432.

Hitler L, Ita BI, Magu TO, Akakuru OU, Nzeata-Ibe NA, Ikeuba AI, Pigweh AI, Edet CO (2018) Solutions to the Dirac Equation for Manning-Rosen Plus Shifted Deng-Fan Potential and CoulombLike Tensor Interaction Using Nikiforov-Uvarov Method. Intl. J. Chem. 10: 99

Inyang EP, Ntibi JE, Inyang EP, William ES, Ekechukwu CC (2020) Any L-state solutions of the Schrödinger equation interacting with class of Yukawa-Eckart potentials. Int. J. innov. res. sci. eng. technol. 11:7

Edet CO, Okoi PO, Chima SO, (2019) Analytic solutions of the Schrödinger equation with non-central generalized inverse quadratic Yukawa potential. Rev. Bras. de Ensino de Fis.

Ikot AN, Okorie US, Amadi PO, Edet CO, Rampho G J, Sever R (2021) The Nikiforov–Uvarov-Functional Analysis (NUFA) Method: A new approach for solving exponential-type potentials. Few-body syst. 62:1

Abu-Shady M. Ikot AN (2019) Analytic solution of multidimensional Schr¨odinger equation in hot and dense QCD media using the SUSYQM method. Eur. Phys. J. Plus, 134:321

Das T, Arda A (2015) Exact analytical solution of the N-dimensional radial Schr¨odinger equation with pseudo harmonic potential via Laplace transform approach. High Energy Phys.137038.

Inyang EP, Inyang EP, Karniliyus J, Ntibi JE, William ES (2021) Diatomic molecules and mass spectrum of heavy quarkonium system with Kratzer-screened Coulomb potential (KSCP) through the solutions of the Schrödinger equation. European Journal of Applied Physics, DOI :10.24018/ejphysics.2021.3.2.61

Inyang EP, Inyang EP, William ES, Ibekwe EE, Akpan IO, (2020) Analytical Investigation of meson spectrum via exact quantization rule approach. arXiv:2012.10639.

Hellmann H (1935) A New Approximation Method in the Problem of Many Electrons, J. Chem. Phys. 3: 61

William ES, Inyang EP, Thompson EA (2020) Arbitrary l-solutions of the Schrödinger equation interacting with HulthénHellmann potential model. Rev. Mex. de Fis. 66:6

Okoi PO, Edet CO, Magu TO (2020) Relativistic treatment of the Hellmann generalized Morse potential, Rev. Mex. de Fis. 66:1 Ita BI (2013) Solutions of the Schr¨odinger equation with inversely quadratic Hellmann plus Mie-type potential using Nikiforov- Uvarov method. International Journal of Recent Advances in Physics. 2:4

Ita BI, Ikeuba AI (2013) Solutions to the Schrödinger Equation with Inversely QuadraticYukawa Plus Inversely Quadratic Hellmann Potential Using Nikiforov-Uvarov Method. Adv. at. mol. phys. 582610

Hitler L, Ita BI, Isa PA, Nzeata-Ibe N, Joseph I, Ivan O, Magu TO, (2017) Wkb Solutions for Inversely Quadratic Yukawa plus Inversely Quadratic Hellmann Potential. World Journal of Applied Physics. 2:4

Ita BI, Ehi-Eromosele CO, Edobor-Osoh A, Ikeuba AI ( 2014)Solutions of the Schrödinger equation with inversely quadratic Hellmann plus inversely quadratic potential using Nikiforov-Uvarov method. AIP Conf.Proc.1629:360

Oyewumi KJ, Bangudu EA, (2003) Isotropic harmonic oscillator plus inverse quadratic potential in N-dimensional spaces. Arab J Sci Eng. 28:2

Ita BI, Nzeata-Ibe N, Magu TO, Hitler L (2018) Bound-State Solutions of the Schrödinger Equation with Woods–Saxon Plus Attractive Inversely Quadratic Potential via Parametric Nikiforov–Uvarov Method. Manila Journal of Science. 11

Maireche A (2017) New Exact Non-relativistic Energy Eigen Values for Modified Inversely Quadratic Hellmann Plus Inversely Quadratic Potential. J Nanosci Curr Res 2:115

Parmar RH, Purohit KR, Rai AK (2020) Approximaate analytical solution of the extended Hulthen-Yukawa with inverse square and Coulombic term plus ring shape potential, AIP Conf.Proc. 2220:140071

Hulthen L (1942) Über die eigenlosunger der Schro¨dinger-Gleichung des deuterons, Ark. Mat. Astron. Fys. A 28: 5

Hassanabadi H, Ghominejad M, Zarrinkamar S, Hassanabadi H (2013) The Yukawa potential in semirelativistic formulation via supersymmetry quantum mechanics, Chin. Phys.B, 22: 060303

Okon IB, Popoola O, Ituen EE, (2016) Bound state solution to Schr¨odinger equation with Hulthen plus exponential Coulombic potential with centrifugal potential barrier using parametric- NikiforovUvarov method.Intl J. Rec. adv. Phys. 5:5101.

Inyang EP, William ES, Obu JA (2021) Eigensolutions of the Ndimensional Schrödinger equation interacting with Varshni-Hulthen potential model. Rev. Mex. de Fis. 67:2

Okorie US, Ikot AN, Rampho GJ, Amadi PO, Abdullah HY (2021) Analytical solutions of fractional Schrodinger equation and thermal properties of Morse potential for some diatomic molecules. Mod Phys Lett A. DOI: 10.1142/S0217732321500413,

Greene RL, Aldrich C, (1976) Variational wave functions for a screened Coulomb potential, Phys. Rev. A 14:2363

Ebomwonyi O, Onate CA, Onyeaju MC, Ikot AN, (2017) Any l-states solutions of the Schrodinger equation interacting with Hellmann-generalized Morse potential model, Karbala Intl J. Mod. Sc, 3:59

K. J. Oyewumi · K. D. Sen, J Math Chem, (2012), 1039–1059

William ES Obu JA Akpan IO, Thompson EA, Inyang EP (2020) Analytical Investigation of the Single-particle energy spectrum in Magic Nuclei of 56Ni and 116Sn. European Journal of Applied Physics 2:6

Oyewumi KJ, Oluwadare OJ (2016) The scattering phase shifts of the Hulthen-type potential plus Yukawa potential, Eur.Phys. J. Plus, 131:295

Qiang WC, Gao Y, Zhou R (2008) Arbitrary l-state approximate solutions of the Hulthen potential through the exact quantization rule, Cen. Eur. Phys. J. Phys. 6:356.

Ikhdair SM (2009) An improved approximation scheme for the centrifugal term and the Hulth´en potential. The Eur. Phys. J.A, 39:307

Bayrak O, Kocak G, Boztosun I (2006) Any l-state solutions of the Hulth´en potential by the asymptotic iteration method, J.Phys. A, 39:11521

Jia CS, Liu JY, Wang PQ, Lin X (2009) Approximate Analytical Solutions of the Dirac equation with the Hyperbolic Potential in the Presence of the Spin Symmetry and Pseudospin Symmetry. Int J Theor Phys. 48: 2633

Ikhdair S, Sever R (2007) Exact solutions of the radial Schr¨odinger equation for some physical potentials, Cent. Eur.J. Phys. 5:516

Okon IB Popoola O (2015) Bound- State solution of Schrodinger equation with Hulthen plus generalized exponential Coulomb potential using Nikiforov- Uvarov method, Intl.J. Rec. Adv. Phys. 4:4301

Qiang WC, Gao Y, Zhou RS (2008) Arbitrary l-state approximate solutions of the Hulth´en potential through the exact quantization rule. Cen. Eur. Phys. J. Phys. 6:356.

Hitler L, Ita BI, Nzeata-Ibe N, Joseph I, Ivan O, Magu TO (2017).Wkb Solutions for Inversely Quadratic Yukawa plus Inversely Quadratic Hellmann Potential, World Journal of Applied Physics 2017; 2(4): 109-112.

Downloads

Published

2022-09-01

How to Cite

BOUND STATE SOLUTIONS TO THE SCHRÖDINGER EQUATION FOR SELECTED DIATOMIC MOLECULES. (2022). The Journals of the Nigerian Association of Mathematical Physics, 64, 1 – 12. https://nampjournals.org.ng/index.php/home/article/view/64

Share

Similar Articles

1-10 of 70

You may also start an advanced similarity search for this article.