INVESTIGATION OF TECHNICAL PERFORMANCE TARGETS FOR A HYBRID PHOTOVOLTAIC/PHOTO-THERMAL SYSTEM

Authors

  • N. E. Erusiafe epartment of Physics, Faculty of Science, University of Lagos, Lagos, Nigeria. Author
  • O. P. Shomotun Department of Physics, Faculty of Science, University of Lagos, Lagos, Nigeria. Author
  • R. Adegbite Department of Physics, Faculty of Science, University of Lagos, Lagos, Nigeria. Author

Keywords:

primary energy saving, electrical efficiency, thermal, PV module, Photovoltaic/photo-thermal (PV/T)

Abstract

Photovoltaic / photo-thermal (PV/T) solar collector also known as hybrid PV/T or solar cogeneration systems provide the opportunity of optimizing energy generating per unit area available for solar collector installation. The objective of the present effort is to study the performance of a photovoltaic / photo-thermal (PV/T) solar collector for the conversion solar irradiation to usable electrical and thermal energy. These systems combine the primary function of a photovoltaic cell with that of a flat plate solar thermal collector. The electrical, thermal and overall efficiency is observed with the set up. Technical parameters in form of overall energy efficiency and primary energy saving efficiency have been considered. The electrical efficiency is expected to improve due to the heat removal process. The result shows that overall energy efficiency and primary energy saving efficiency was found to attain a maximum value of 73.0% and 91.0% respectively, within the period of observation at flow rate ????????. ????????ml/s. This represents the optimum condition for the PV/T generator. 

Downloads

Download data is not yet available.

References

G. N. Tiwari and R. K. Mishra (2012). Advanced renewable energy sources. Royal Society of Chemistry.

G. N. Tiwari and A. Tiwari (2016). Handbook of solar energy. Singapore: Springer.

A. Kumar, P. Baredar and U. Qureshi (2015). Historical and recent development of photovoltaic thermal (PVT) technologies. Renewable and Sustainable Energy Reviews, 42, 1428-1436.

A. L. Abdullah, S. Misha, N. Tamaldin, M. A. M. Rosli, and F. A. Sachit (2018). Photovoltaic thermal/solar (PVT) collector (PVT) system based on fluid absorber design: A review. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 48(2), 196-208.

X. Zhang, X. Zhao, S. Smith, J. Xu, and X. Yu (2012). Review of R&D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renewable and Sustainable Energy Reviews, 16(1), 599-617.

Erusiafe, Shomotun and Adegbite J. of NAMP A. Fudholi, k. Sopian, M. H. Yazdi, M. H. Ruslan, A. Ibrahim and H. A. Kazem (2014). Performance analysis of photovoltaic thermal (PVT) water collectors. Energy conversion and management, 78, 641-651.

N. Aste, C. Del Pero, and F. Leonforte (2012). Thermal-electrical optimization of the configuration a liquid PVT collector. Energy Procedia, 30, 1-7.

A. Ibrahim, M. Y. Othman, M. H. Ruslan, M. Alghoul, M. Yahya, A. Zaharim, and K. Sopian (2009) Performance of photovoltaic thermal collector (PVT) with different absorbers design. WSEAS Transactions on Environment and Development, 5(3), 321-330.

D. A. Redpath, H. Singh, C. Tierney, and P. Dalzell (2012). An experimental comparison of two solar photovoltaic- thermal (PVT) energy conversion systems for production of heat and power. Energy and Power, 2(4), 46-50.

A. Fudholi, N. F. M. Razali, A. Ridwan, R. Yendra, H. Hartono, A. P. Desvina and K. Sopian (2018). Overview of photovoltaic thermal (PVT) water collector. International Journal of Power Electronics and Drive Systems, 9(4), 1891.

M. Zohri, N. Nurato and A. Fudholi (2017). Photovoltaic thermal (PVT) system with and without fins collector: theoretical approach. International Journal of Power Electronics and Drive Systems, 8(4), 1756-1763.

J. Cieśliński, B. Dawidowicz and J. Krzyżak (2016). Performance of the PVT solar collector operated with water– Al2O3 nanofluid. Polska Energetyka Słoneczna, 1, 5-8.

G. Rajendiran, V. B. Kuppusamy, and S. Shanmugasundaram (2018). Experimental investigation of the effects of sonication time and volume concentration on the performance of PVT solar collector. IET Renewable Power Generation, 12(12), 1375-1381.

M. Zohri, S. Hadisaputra, and A. Fudholi (2018). Exergy and energy analysis of photovoltaic thermal (PVT) with and without fins collector. ARPN J. Eng. Appl. Sci, 13(3), 803-808.

T. Matuska, V. Jirka, and V. Poulek (2014). Use of polysiloxane gel as laminate for solar PVT collectors. In Proceedings of Conference Eurosun. http://proceedings.ises.org/paper/eurosun2014/eurosun2014-0058-Matuska.pdf

M. Lämmle, M. Hermann, K. Kramer, C. Panzer, A. Piekarczyk, C. Thoma, and S. Fahr (2018) Development of highly efficient, glazed PVT collectors with overheating protection to increase reliability and enhance energy yields. Solar Energy, 176, 87-97.

M. F. I. Al Imam, R. A. Beg, M. S. Rahman, and M. Z. H. Khan (2016). Performance of PVT solar collector with compound parabolic concentrator and phase change materials. Energy and Buildings, 113, 139-144.

S. M. Sakhr, C. P. Tso, C. P., and M N, Ervina Efzan (2020). A Case Study on Effect of Inclination Angle on Performance of Photovoltaic Solar Thermal Collector in Forced Fluid Mode. Renewable Energy Research and Application, 1(2), 187-196.

I. Tabet, K. Touafek, N. Bellel, N. Bouarroudj, A. Khelifa, and M. Adouane (2014). Optimization of angle of inclination of the hybrid photovoltaic-thermal solar collector using particle swarm optimization algorithm. Journal of Renewable and Sustainable Energy, 6(5), 053116.

M. M. Sardouei, H. Mortezapour, K. J. Naeimi (2018). Temperature distribution and efficiency assessment of different PVT water collector designs. Sādhanā, 43(6), 1-13.

J. Fan, T. P. Seng, G. L. Hua, L.K. On, and K. Loh (2016). Design and thermal performance test of a solar photovoltaic/thermal (PV/T) collector. Journal of Clean Energy Technologies, 4(6), p435-439.

A. Ibrahim, G. L. Jin, R. Daghigh, M. H. M. Salleh, M. Y. Othman, M. H. Ruslan, S. Mat and K. Sopian (2009). Hybrid Photovoltaic Thermal (PV/T) Air and Water Based Solar Collectors Suitable for Building Integrated Applications. American Journal of Environmental Sciences, 5(5), 618-624.

T. N. Anderson, M. Duke, G. L. Morrison, and J. K. Carson (2009). Performance of a building integrated photovoltaic/thermal (BIPVT) solar collector. Solar Energy, 83(4), 445-455.

S. Senthilraja, R. Gangadevi, R. Marimuthu, and M. Baskaran (2020). Performance evaluation of water and air based PVT solar collector for hydrogen production application. International Journal of Hydrogen Energy, 45(13), 7498- 7507.

Downloads

Published

2022-09-01

How to Cite

INVESTIGATION OF TECHNICAL PERFORMANCE TARGETS FOR A HYBRID PHOTOVOLTAIC/PHOTO-THERMAL SYSTEM. (2022). The Journals of the Nigerian Association of Mathematical Physics, 64, 27 – 32. https://nampjournals.org.ng/index.php/home/article/view/67

Share

Similar Articles

1-10 of 40

You may also start an advanced similarity search for this article.