THERMODYNAMIC PROPERTIES OF INVERTED ISOTROPIC OSCILLATOR WITH DELTA FUNCTION POTENTIAL IN A MAGNETIC FIELD
Keywords:
Delta function potential, Radial Schrodinger equation, Magnetic field, Thermodynamic functions, Frobenius method, Inverted isotropic oscillatorAbstract
The thermal properties of inverted isotropic harmonic oscillator with delta function potential in a magnetic field was examined theoretically. The radial form of the Schrodinger equation with a formulated generalized potential was solved using the Frobenius series solution method and the energy eigenvalues was obtained to describe the thermal properties. Analysis of the results showed that, an increase in the strength of the delta function potential leads to a corresponding increase in the even parity energy eigenvalues of the generalized potential and degeneracy removed. An increase in the magnetic field, enhances the generalized potential about a mean point as well as the energy eigenvalues. As the magnetic field and the strength of the delta function potential increases, the thermodynamic functions are enhanced, especially, the additive property of entropy was established.
Downloads
References
Yuce, C , Kilic, A and Coruh, A (2006). Phys. Scr. 74; 114
Barton G (1986) Ann. Phys. 166 322
Pedrosa I A and GuedesI (2004) int. J. Mod. Phys. B 18 1379
Chruscinski D (2004) J. Math. Phys. 45 841
Shimbori T (2000) Phys. Lett. A 273 37
Choi J R (2004) Phys Scr. 70 271
Bhaduri R K, Khare A and Law J (1995) Phys. Rev. E 52 486
Guth A and Pi S Y (1991) Phys. Rev. D 32 1899
Boyanovsky D, Holmn R, Lee D S and Silva J P (1995) Nucl. Phys. B 441 595
Miller P A and Sarkar S Phys. Rev. E 58 (1998) 4217
Gaioli F H Garciaalvarez E T and Castagnino M A Int. J. Theor. Phys. 36 (1997) 2371
Hofmann H and kiderlin D Phys. Rev. C 56(1997) 1025
Lapidus I R Am. J. Phys. 55 (1987) 172
Oseguera U Eur. J Phys. 11(1990) 35
Patil S H Eur. J. Phys. 27(2006) 899
Ngiangia A T and Harry S T J. NAMP 36(1) (2016) 239
Zettili N Quantum mechanics: Concepts and applications. John Wiley and Sons, LTD. New York; .(2001) 340
Ni G and Chen S Advanced Quantum Mechanics, Rinton Press (2002) 131
Ikhdair S M, Falaye B J, Hamzavi M Ann Phys 353 (2015) 282
Hayashi H. Introduction to dynamic spin chemistry: Magnetic field effects on chemical and Biochemical Reactions. World Scientific, Singapore. (2004) 97
Ngiangia, A. T Orukari M. A and Jim-George F. Asian Res. Jour. of Math. 10(4) (2018) 1
Steiner U E, and Ulrich T. Chem. Rev.89(1) (1989) 51
Rogers CT Pure Appl. Chem. 81(1) (2009) 19.
Filip P. Jour. of Phys. Conf. Ser. 63 (2015) 012.
Ikot A N, Lutfuoglu B C, Ngwueke M I, Udoh M E, Zare S, Hassanabadi H. Eur Phys J Plus 131 (2016) 419
Ikot A N, Chukwuocha E O, Onyeaju M C, Onate C A, Ita B I, Udoh M E. Pramana J Phys 90 (2018) 22
Ikot A N, Okorie U S, Sever R, Rampho G J. Eur Phys J Plus 134 (2019) 386
Okorie U S, Ibekwe E E, Ikot A N, Onyeaju M C, Chukwuocha E O. J Korean Phys Soc 73 (2018)1211
Wang J, Jia C S, Li C J, Peng X L, Zhang L H, Liu J Y. ACS Omega 4 (2019) 19193
Yahya, W. A., Oyewumi, K. JJour. of Assoc. of Arab Univ. for Basic and Appl. Sci. 21(1) (2016) 53 https://doi.org/10.1016/j.jaubas.2015.04.001.
Ibekwe E E, Ngiangia A T, Okorie U S, Ikot A N and Abdullah H Y , Iran J Sci Technol Trand Sci (2020) DOI 10.107/s40995-020-00913-4
Ussembayev N S Int J Theor Phys 48 (2009) 607
Rani R, Chand F. Ind J Phys 92 (2018)145
Ikhdair SM, Sever R. J Math Chem 1137 (2009) 45
Tiwari S Tandon P and Uttam K. N J. Speccro. (2012) 1
Chandra, S. A Textbook of Statistical Mechanics, CBS Publishers and Distributors (2008) 231.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 The Journals of the Nigerian Association of Mathematical Physics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.