THERMODYNAMIC PROPERTIES OF INVERTED ISOTROPIC OSCILLATOR WITH DELTA FUNCTION POTENTIAL IN A MAGNETIC FIELD

Authors

  • Alalibo T. Ngiangia Department of Physics, University of Port Harcourt Choba, Port Harcourt, Nigeria. Author
  • Okechukwu Amadi Department of mathematics, Ignatius Ajuru University of Education, Port Harcourt, Nigeria. Author
  • Tombotamunoa W. J. Lawson Department of mathematics, Ignatius Ajuru University of Education, Port Harcourt, Nigeria. Author

Keywords:

Delta function potential, Radial Schrodinger equation, Magnetic field, Thermodynamic functions, Frobenius method, Inverted isotropic oscillator

Abstract

The thermal properties of inverted isotropic harmonic oscillator with delta function potential in a magnetic field was examined theoretically. The radial form of the Schrodinger equation with a formulated generalized potential was solved using the Frobenius series solution method and the energy eigenvalues was obtained to describe the thermal properties. Analysis of the results showed that, an increase in the strength of the delta function potential leads to a corresponding increase in the even parity energy eigenvalues of the generalized potential and degeneracy removed. An increase in the magnetic field, enhances the generalized potential about a mean point as well as the energy eigenvalues. As the magnetic field and the strength of the delta function potential increases, the thermodynamic functions are enhanced, especially, the additive property of entropy was established. 

         Views | Downloads: 51 / 24

Downloads

Download data is not yet available.

References

Yuce, C , Kilic, A and Coruh, A (2006). Phys. Scr. 74; 114

Barton G (1986) Ann. Phys. 166 322

Pedrosa I A and GuedesI (2004) int. J. Mod. Phys. B 18 1379

Chruscinski D (2004) J. Math. Phys. 45 841

Shimbori T (2000) Phys. Lett. A 273 37

Choi J R (2004) Phys Scr. 70 271

Bhaduri R K, Khare A and Law J (1995) Phys. Rev. E 52 486

Guth A and Pi S Y (1991) Phys. Rev. D 32 1899

Boyanovsky D, Holmn R, Lee D S and Silva J P (1995) Nucl. Phys. B 441 595

Miller P A and Sarkar S Phys. Rev. E 58 (1998) 4217

Gaioli F H Garciaalvarez E T and Castagnino M A Int. J. Theor. Phys. 36 (1997) 2371

Hofmann H and kiderlin D Phys. Rev. C 56(1997) 1025

Lapidus I R Am. J. Phys. 55 (1987) 172

Oseguera U Eur. J Phys. 11(1990) 35

Patil S H Eur. J. Phys. 27(2006) 899

Ngiangia A T and Harry S T J. NAMP 36(1) (2016) 239

Zettili N Quantum mechanics: Concepts and applications. John Wiley and Sons, LTD. New York; .(2001) 340

Ni G and Chen S Advanced Quantum Mechanics, Rinton Press (2002) 131

Ikhdair S M, Falaye B J, Hamzavi M Ann Phys 353 (2015) 282

Hayashi H. Introduction to dynamic spin chemistry: Magnetic field effects on chemical and Biochemical Reactions. World Scientific, Singapore. (2004) 97

Ngiangia, A. T Orukari M. A and Jim-George F. Asian Res. Jour. of Math. 10(4) (2018) 1

Steiner U E, and Ulrich T. Chem. Rev.89(1) (1989) 51

Rogers CT Pure Appl. Chem. 81(1) (2009) 19.

Filip P. Jour. of Phys. Conf. Ser. 63 (2015) 012.

Ikot A N, Lutfuoglu B C, Ngwueke M I, Udoh M E, Zare S, Hassanabadi H. Eur Phys J Plus 131 (2016) 419

Ikot A N, Chukwuocha E O, Onyeaju M C, Onate C A, Ita B I, Udoh M E. Pramana J Phys 90 (2018) 22

Ikot A N, Okorie U S, Sever R, Rampho G J. Eur Phys J Plus 134 (2019) 386

Okorie U S, Ibekwe E E, Ikot A N, Onyeaju M C, Chukwuocha E O. J Korean Phys Soc 73 (2018)1211

Wang J, Jia C S, Li C J, Peng X L, Zhang L H, Liu J Y. ACS Omega 4 (2019) 19193

Yahya, W. A., Oyewumi, K. JJour. of Assoc. of Arab Univ. for Basic and Appl. Sci. 21(1) (2016) 53 https://doi.org/10.1016/j.jaubas.2015.04.001.

Ibekwe E E, Ngiangia A T, Okorie U S, Ikot A N and Abdullah H Y , Iran J Sci Technol Trand Sci (2020) DOI 10.107/s40995-020-00913-4

Ussembayev N S Int J Theor Phys 48 (2009) 607

Rani R, Chand F. Ind J Phys 92 (2018)145

Ikhdair SM, Sever R. J Math Chem 1137 (2009) 45

Tiwari S Tandon P and Uttam K. N J. Speccro. (2012) 1

Chandra, S. A Textbook of Statistical Mechanics, CBS Publishers and Distributors (2008) 231.

Downloads

Published

2023-08-01

How to Cite

THERMODYNAMIC PROPERTIES OF INVERTED ISOTROPIC OSCILLATOR WITH DELTA FUNCTION POTENTIAL IN A MAGNETIC FIELD. (2023). The Journals of the Nigerian Association of Mathematical Physics, 65, 103 – 110. https://nampjournals.org.ng/index.php/home/article/view/38

Share

Similar Articles

11-20 of 85

You may also start an advanced similarity search for this article.