A SUBCLASS OF δ − VALENT FUNCTIONS FOR OPERATORS ON A HILBERT SPACE
Keywords:
distortion theorem, coefficient estimate, Univalent functionAbstract
In this article, the authors investigated a new subclass of analytic functions for operators on a Hilbert space relating to the unit disk ???? = {???? ∈ ℂ: |????| < ????}. Interesting results on coefficient estimates, distortion theorem were pointed out for this subclasses.
Downloads
References
Robertson, M.S., A characterization of the class of starlike univalent functions, Michigan Math. J., 26 (1979), 65 -69.
Schild, A., On a class of functions schlicht in the unit circle, Proc. Amer. Math. Soc., (1954), 115 - 120.
MacGregor, T.H., The radius of convexity for starlike functions of order 1 , Proc. Amer. Math. Soc., 14 (1963), 71 -76. 2
Oladipo, A. T., Fagbemiro, O., Certain classes of univalent functions with negative coefficients, Indian Journal of Mathematics,(2011) Vol., 53, no. 3, 429 -458.
Sayali, J., Santosh, B.J., and Ram, M., On a subclass of analytic functions for operator on a Hilbert space, Stud. Univ. Babas- Bolyai Math. 61 (2016) , No. 2, 147 - 153.
Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109 -116.
Gupta, V.P., Jain, P. K., A certain classes of univalent functions with negative coefficients, Bull. Austral. Math. Soc., 14 (1976), 409 - 416.
Owa, S., Aouf, M.K., Some applications of fractional calculus operators to classes of univalent functions negative coefficients, Integral Trans. and Special Functions, 3 (1995), no. 3, 211 - 220.
Fan, K., Analytic functions of a proper contraction, Math. Zeitschr., 160 (1978), 275 290. Xiaopei, Y., A subclass of analytic p valent functions for operator on Hilbert space, Math. Japon., 40 (1994), no. 2, 303 - 308.
Owa, S., On the distortion theorem, Kyungpook Math. J., 18 (1978), 53 -59. Xia, D., Spectral theory of hyponormal operators, Sci. Tech. Press, Shanghai, 1981, Birkhauser Verlag, Basel - Boston - Stuttgart, 1983, 1 -241.
Dunford, N., J.T., Linear operators part I. General Theory, New York - London, 1958.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The Journals of the Nigerian Association of Mathematical Physics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.