SEIR MODEL WITH A VACCINATION PARAMETER USING COVID-19 AS A CASE STUDY
Keywords:
Scilab, COVID-19, Vaccination parameter, SEIR Model, StabilityAbstract
The SEIR mathematical model with a vaccination parameter is formulated to study the spread of COVID-19. The equilibrium points of the system of differential equations are obtained. The local and global stabilities of the disease-free and endemic equilibria are presented. The basic reproduction number of the model is obtained. The parameters used in the model are estimated. The system of differential equations representing the model is solved numerically using the scilab software application. The result of the simulation shows that in the long term, the presence of a vaccination parameter causes the disease to converge to the disease-free equilibrium for any value of the basic reproduction number.
Downloads
References
Mallapaty, S., Callaway, E., Kozlov, M., Ledford, H., Pickrell, J., Van Noorden, R. (2021). "How COVID vaccine shaped 2021 in eight powerful charts". Nature. 600 (7890): 580–583. Bibcode:2021Natur.600..580M. doi:10.1038/d41586-021-03686-x. PMID 34916666. S2CID 245262732
Beaumont, P. (2020). "Covid-19 vaccine: who are countries prioritizing for first doses?". The Guardian. ISSN 0261-3077. Retrieved 26 December 2020.
Richie, H., Ortiz-Ospina, E., Beltekian, D., Methieu, E.,, Hasell, J., Macdonald, B., et al. (2021). "Coronavirus (COVID-19) Vaccinations – Statistics and Research". Our World in Data. Retrieved 7 February 2021.
Mullard, A. (2020). "How COVID vaccines are being divvied up around the world". Nature. doi:10.1038/d41586- 020-03370-6. PMID 33257891. S2CID
So, A. D., Woo, J. (2020). "Reserving coronavirus disease 2019 vaccines for global access: cross sectional analysis". BMJ. 371: m4750. doi:10.1136/bmj.m4750. PMC 7735431. PMID 33323376
Kahn, R., Holmdahl, I. Reddy, S., Jernigan, J., Mina, M.J., Slayton, R. B., (2021). Mathematical Modeling to Inform Vaccination Strategies and Testing Approaches for Coronavirus Disease 2019
Gokbulut, N., Kaymakamzade, B., Sanlidag, T. , Hincal, E., (2021) Mathematical modelling of Covid-19 with the effect of vaccine, AIP Conference Proceedings 2325,020065 https://doi.org/10.1063/5.0040301
Yavuz, M. , Coşar, F. , Günay, F. and Özdemir, F. (2021) A New Mathematical Modeling of the COVID-19 Pandemic Including the Vaccination Campaign. Open Journal of Modelling and Simulation, 9, 299-321. doi: 10.4236/ojmsi.2021.93020
Moore, S., Hill, E. M., Tildesley, M. J., Dyson, L., Keeling, M. J., (2021), Vaccination and non-pharmaceutical interventions for COVID-19: A mathematical modelling study, The Lancet Infectious Diseases, Volume 21, Issue 6 Pages 793-802, ISSN 1473-3099
Diagne, M. L., Rwezaura, H. Tchoumi, S. Y., Tchuenche, J. M., (2021). A Mathematical Model of COVID-19 with Vaccination and Treatment. Comput MathMethods Med :1250129.
Universitat Pompeu Fabra – Barcelona (2021). "A mathematical model to help optimize vaccine development." ScienceDaily. ScienceDaily. .
Roser, M., Rrtiz-Ospina, E. and Ritchie, H. (2013) – “Life Expectancy”. Published online at OurWorldInData.org. Retrieved from: ‘https://ourworldindata.org/life-expectancy’ [Online Resource]
Liu, Z., Magal, P., Seydi, O. and Webb, G. (2020). A COVID-19 epidemic model with latency period, Infectious Disease Modelling, 5:323-337 https://doi.org/10.1016/j.idm.2020.03.003
World Health Organization (WHO) (2020), Report of the WHO-China joint mission on coronavirus disease 2019 COVID-19)
https://www,who.int/docs/default-source/coronavirus/who-china-joint-missionon-covid-19-final-pdf.(2019)
Caroline Tien (2021) “How long will COVID-19 Vaccine-Induced Immunity last?” www.verywellhealth.com/length-of-covid-19-vaccine-immunity-5094857
Haukkanen, P. (2011) On Descartes’ rule of signs, Far East J. Math. Edu., 6(1): 21- 28.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 The Journals of the Nigerian Association of Mathematical Physics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.