Generalization Of Newton’s Dynamical Gravitational  Potential Using Gravitational Time Dilation And Gravitational Length Contraction In Schwarzschild Spacetime

Authors

  • Patrick Agwu Okpara Department of Industrial Mathematics and Health Statistics, International Institute for machine learning, robotic and Artificial intelligent of David Umahi Federal University of Health Sciences, Uburu, Nigeria Author
  • Sunday Nwokpoku Aloke Department of Industrial Mathematics and Health Statistics, International Institute for machine learning, robotic and Artificial intelligent of David Umahi Federal University of Health Sciences, Uburu, Nigeria Author
  • Nelson Ezieke Department of Industrial Mathematics and Health Statistics, International Institute for machine learning, robotic and Artificial intelligent of David Umahi Federal University of Health Sciences, Uburu, Nigeria Author
  • Nnaemeka Majindu Department of Industrial Mathematics and Health Statistics, International Institute for machine learning, robotic and Artificial intelligent of David Umahi Federal University of Health Sciences, Uburu, Nigeria Author

DOI:

https://doi.org/10.60787/jnamp.v68no1.429

Keywords:

Generalized Gravitational Scalar Potentials, Gravitational time dilation, Gravitational length contraction, Schwarzschild space time

Abstract

In this article, we employed gravitational time dilation and length contraction within Schwarzschild spacetime to formulate a generalized gravitational field equation. This dynamic field equation was then used for static, homogeneous spherical massive bodies to derive the generalized exterior gravitational scalar potential. The results indicate that the generalized dynamic gravitational scalar potential includes an additional correction term proportional to ????−2 , which is absent in both Newton's equations of motion and Einstein's geometrical equations of motion.

         Views | Downloads: 22 / 20

Downloads

Download data is not yet available.

References

Howusu, S. X. K. (2010). Complete Dynamic theories of physics. Jos University press Ltd. pp. 1-70

Lumbi, W. L., Howusu, S. X. K., Nuhu, T. and Nwagbara, O. (2014). Generalized Dynamical gravitational scalar Potential for Static Homogeneous Spherical distribution of mass. Journal of the Nigeria Association of Mathematical physics, 28(1), 17-20

Lumbi, W. L., Nwagbara, O., Ewa, I. I., Yakubu, N. and Hassa, M. (2017). Generalization of Newton’s Planetary Equation of motion for static Homogeneous spherical massive bodies. International Journal of Theoretical and Mathematical Physics, 7(1): 1-3

Chifu, E. N. (2012). Gravitational fields Exterior to Homogeneous Spherical Masses. The Abreham Zelmanov Journal, 5:1-67

Lumbi, W. L. and Howusu, S. X. K. (2014). Generalized Dynamical Equation of Motion for Particles of non-zero mass for static Homogeneous Spherical Gravitational Fileds. Journal of Nigeria Association of Mathematical Physics. 287(7):365-368

Lumbi, W. L., Howusu, S. X. K., Nwagbara, O. and Gurku, U. M. (2016). Generalization of Newton’s Dynamical Gravitational scalar Potential for static Homogeneous Spherical Distribution of Mass using Golden Laplacian Operator. International Journal of Pure and Applied Sciences. 6(1): 105-111

Chifu, E. N. (2010). Motion of Test Particles and Orbits Exterior to Static Homogeneous Prolate Spherical spacetime. The African Physical Review, 4:113-118.

Hobsion, M. P., Efstathion, G. P. and Lasenby, A. N. (2006). General Relativity. An Introduction for Physicists. Cambridge University Press. 196-220

Lambourne, R. J. A. (2010). Relativity, gravitational and Cosmology. Cambridge University Press. Lee 1-192.

Howusu, S. X. K. (2007). The 210 Astrophysical solution plus cosmological field equations. Jos University press Ltd. Jos(Nigeria). Pp. 1-100

Mungon, C. E. (2009). Three important Taylor series for introductory Physics. Lat. Am. J. Phys. Educ. 3(3):535-538

Downloads

Published

2024-10-23

Issue

Section

Articles

How to Cite

Generalization Of Newton’s Dynamical Gravitational  Potential Using Gravitational Time Dilation And Gravitational Length Contraction In Schwarzschild Spacetime. (2024). The Journals of the Nigerian Association of Mathematical Physics, 68, 151-156. https://doi.org/10.60787/jnamp.v68no1.429

Share

Similar Articles

11-20 of 48

You may also start an advanced similarity search for this article.