GENERALIZED UNCERTAINTY PRINCIPLE EFFECTS ON NEUTRON STAR EQUATION OF STATE AND THERMAL PROPERTIES
DOI:
https://doi.org/10.60787/jnamp.vol71no.602Keywords:
Neutron Stars, Generalized Uncertainty Principle, Stellar Structure, Quantum Gravity, NICERAbstract
We investigate how the Generalised Uncertainty Principle (GUP) affects neutron star structure and cooling. By modifying the equations of state to include GUP effects at extremely high densities through momentum-dependent corrections to the relativistic Fermi gas model, we compute mass-radius relations and thermal evolution curves. Using advanced numerical techniques, we solve the Tolman-Oppenheimer-Volkoff and thermal transport equations together. Our results show that GUP introduces observable changes, especially in cooling behaviour and radius estimates. We compare our findings with NICER data from PSR J0030+0451 and PSR J0740+6620, as well as gravitational wave events like GW170817 and GW190425. This comparison enables us to place a tight upper bound on the GUP parameter, , making it the strongest astrophysical constraint to date. Our work highlights neutron stars as powerful tools for testing quantum gravity, setting the stage for future investigations using multi-messenger astronomy.
Downloads
References
Lattimer, J. M., & Prakash, M. (2004). The physics of neutron stars. Science, 304(5670), 536-542. https://doi.org/10.1126/science.1090720
Oertel, M., Hempel, M., Kla¨hn, T., & Typel, S. (2017). Equations of state for supernovae and compact stars. Reviews of Modern Physics, 89(1), 015007. https: //doi.org/10.1103/RevModPhys.89.015007
Breschi, M., et al. (2024). Constraining the equation of state in neutron-star cores via the long-ringdown signal. Nature Communications, 15, 5650. https://doi.org/10.1038/s41467-024-05650-4
Hossenfelder, S. (2013). Minimal length scale scenarios for quantum gravity. Living Reviews in Relativity, 16(1), 2. https://doi.org/10.12942/lrr-2013-2
Battista, E., Capozziello, S., & Errehymy, A. (2024). Generalized uncertainty principle corrections in Rastall–Rainbow Casimir wormholes. European Physical Journal C, 84, 1314. https://doi.org/10.1140/epjc/s10052-024-13273-7
Balkin, R., Serra, J., Springmann, K., & Weiler, A. (2025). Heavy neutron stars from light scalars. Journal of High Energy Physics, 2025(2), 141.
Miller, M. C., et al. (2019). PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophysical Journal Letters, 887(1), L24. https://doi.org/10.3847/2041-8213/ab50c5
Riley, T. E., et al. (2019). A NICER view of PSR J0030+0451: Millisecond pulsar parameter estimation. Astrophysical Journal Letters, 887(1), L21. https://doi.org/ 10.3847/2041-8213/ab481c
Thomas E. Riley et al (2021). A NICER view of the massive pulsar PSR J0740+6620 informed by radio timing and XMM-Newton spectroscopy. Astrophysical Journal Letters, 918(2), L27. https://doi.org/10.3847/2041-8213/ac0a81
Raaijmakers, G., et al. (2021). Constraints on the dense matter equation of state and neutron star properties from NICER’s mass-radius estimate of PSR J0740+6620 and multimessenger observations. Astrophysical Journal Letters, 918(2), L29. https://doi.org/10.3847/2041-14 -8213/ac2a9e
Abbott, B. P., Abbott, R, Acernese, F., Ackley, F., et al. (2017). GW170817: Observation of gravitational waves from a binary neutron star inspiral. Physical Review Letters, 119(16), 161101. https://doi.org/10.1103/PhysRevLett.119.161101
Abbott, R., et al. (2020). GW190425: Observation of a compact binary coalescence with total mass ∼ 3.4M⊙. Astrophysical Journal Letters, 892(1), L3. https://doi. org/10.3847/2041-8213/ab75f5
Sotani, H., Nishimura, N., & Naito, T. (2022). New constraints on the neutron-star mass and radius relation from terrestrial nuclear experiments. Progress of Theoretical and Experimental Physics, 2022(4), 041D01. https://doi.org/10.1093/ptep/ ptac046
Choudhury, D., et al. (2024). Constraining first-order phase transition inside neutron stars with application of Bayesian techniques on PSR J0437-4715 NICER data. arXiv preprint, arXiv:2502.11976.
Vagenas, E. C. (2008). Generalized uncertainty principle and neutron stars. Journal of High Energy Physics, 2008(07), 009. https://doi.org/10.1088/1126-6708/ 2008/07/009
Nozari, K., & Etemadi, A. (2012). Neutron stars structure in the context of massive gravity. Physical Review D, 85(10), 104029. https://doi.org/10.1103/PhysRevD. 85.104029
Dohi, A., Kase, R., Kimura, R., Yamamoto, K., & Hashimoto, M. (2021). Neutron star cooling in modified gravity theories. Progress of Theoretical and Experimental Physics, 2021(9), 093E01. https://doi.org/10.1093/ptep/ptab082
Fischer, T., et al. (2024). Neutron stars in accreting systems – Signatures of the QCD phase transition. Astronomy & Astrophysics, 687, A73. https://doi.org/10.1051/ 0004-6361/202348552
Tawfik, A. N., & Diab, A. M. (2015). Review on generalized uncertainty principle. Reports on Progress in Physics, 78(12), 126001. https://doi.org/10.1088/ 0034-4885/78/12/126001
Tews, I., Carlson, J., Gandolfi, S., & Reddy, S. (2018). Constraining the speed of sound inside neutron stars with chiral effective field theory interactions and observations. Astrophysical Journal, 860(2), 149. https://doi.org/10.3847/1538-4357/ aac267
Antoniadis, J., et al. (2013). A massive pulsar in a compact relativistic binary. Science, 340(6131), 1233232. https://doi.org/10.1126/science.1233232
Cromartie, H. T., Fonseca, E, Ransom, S.M, Demorest, P.B., et al. (2020). Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nature Astronomy, 4(1), 72-76. https://doi. org/10.1038/s41550-019-0880-2
Romani, R. W., Kandel, D., Filippenko, A. V., Brink, T. G., & Zheng, W. (2022). PSR J09520607: The fastest and heaviest known galactic neutron star. Astrophysical Journal Letters, 934(2), L18. https://doi.org/10.3847/2041-8213/ac8007
Watanabe, C., Yanase, K., & Yoshinaga, N. (2020). Searching optimum equations of state of neutron star matter in strong magnetic fields with rotation. Progress of Theoretical and Experimental Physics, 2020(10), 103E04. https://doi.org/10.1093/ptep/ptaa130
Downloads
Published
Issue
Section
License
Copyright (c) 2025 The Journals of the Nigerian Association of Mathematical Physics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

