A SUBCLASS OF δ − VALENT FUNCTIONS FOR OPERATORS ON A HILBERT SPACE

Authors

  • O. Fagbemiro 1Department of Mathematics, Federal University Agriculture Abeokuta, Abeokuta, Nigeria, P.M.B. 2240, Abeokuta, Nigeria. Author
  • E. Ukeje Department of Mathematics, Michael Okpara University of Agriculture Umudike P.M.B. Umuahia, Nigeria. Author
  • A.T. Oladipo Pure and Applied Mathematics, Ladoke Akintola University of Technology, Ogbomoso, Nigeria, P.M.B. 4000, Ogbomoso, Nigeria. Author

Keywords:

distortion theorem, coefficient estimate, Univalent function

Abstract

In this article, the authors investigated a new subclass of analytic functions for operators on a Hilbert space relating to the unit disk ???? = {???? ∈ ℂ: |????| < ????}. Interesting results on coefficient estimates, distortion theorem were pointed out for this subclasses. 

         Views | Downloads: 42 / 20

Downloads

References

Robertson, M.S., A characterization of the class of starlike univalent functions, Michigan Math. J., 26 (1979), 65 -69.

Schild, A., On a class of functions schlicht in the unit circle, Proc. Amer. Math. Soc., (1954), 115 - 120.

MacGregor, T.H., The radius of convexity for starlike functions of order 1 , Proc. Amer. Math. Soc., 14 (1963), 71 -76. 2

Oladipo, A. T., Fagbemiro, O., Certain classes of univalent functions with negative coefficients, Indian Journal of Mathematics,(2011) Vol., 53, no. 3, 429 -458.

Sayali, J., Santosh, B.J., and Ram, M., On a subclass of analytic functions for operator on a Hilbert space, Stud. Univ. Babas- Bolyai Math. 61 (2016) , No. 2, 147 - 153.

Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109 -116.

Gupta, V.P., Jain, P. K., A certain classes of univalent functions with negative coefficients, Bull. Austral. Math. Soc., 14 (1976), 409 - 416.

Owa, S., Aouf, M.K., Some applications of fractional calculus operators to classes of univalent functions negative coefficients, Integral Trans. and Special Functions, 3 (1995), no. 3, 211 - 220.

Fan, K., Analytic functions of a proper contraction, Math. Zeitschr., 160 (1978), 275 290. Xiaopei, Y., A subclass of analytic p  valent functions for operator on Hilbert space, Math. Japon., 40 (1994), no. 2, 303 - 308.

Owa, S., On the distortion theorem, Kyungpook Math. J., 18 (1978), 53 -59. Xia, D., Spectral theory of hyponormal operators, Sci. Tech. Press, Shanghai, 1981, Birkhauser Verlag, Basel - Boston - Stuttgart, 1983, 1 -241.

Dunford, N., J.T., Linear operators part I. General Theory, New York - London, 1958.

Downloads

Published

2022-03-01

How to Cite

A SUBCLASS OF δ − VALENT FUNCTIONS FOR OPERATORS ON A HILBERT SPACE. (2022). The Journals of the Nigerian Association of Mathematical Physics, 63, 39 –44. https://nampjournals.org.ng/index.php/home/article/view/108

Share