INTERDEPENDENCE OF DEPOSITION TIME, DOPING CONCENTRATION, AND ANNEALING ON THE OPTICAL BEHAVIOR OF MG-DOPED ANTIMONY SULPHIDE (Sb2S3) THIN FILMS.

Authors

  • Ikechukwu C. Nworie Department of Industrial and Medical Physics, David Umahi Federal University of Health Sciences  Uburu, Ebonyi State, Nigeria, International Institute for Machine Learning, Robotics & Artificial Intelligence Research, Ebonyi State, Nigeria Author
  • Ugochukwu S. Ele Department of Industrial Physics, Ebonyi State University Abakaliki, Nigeria Author
  • P. B. Otah Department of Industrial and Medical Physics, David Umahi Federal University of Health Sciences  Uburu, Ebonyi State, Nigeria, International Institute for Machine Learning, Robotics & Artificial Intelligence Research, Ebonyi State, Nigeria Author
  • A. O. Ojobeagu Department of Industrial and Medical Physics, David Umahi Federal University of Health Sciences  Uburu, Ebonyi State, Nigeria, International Institute for Oncology and Cancer research, Ebonyi State, Nigeria Author
  • C. Mbamara Department of Industrial Physics, University of Agriculture and Environmental Science,  Umuagwo, Imo State, Nigeria Author
  • N. W. Brown Department of Industrial and Medical Physics, David Umahi Federal University of Health Sciences  Uburu, Ebonyi State, Nigeria, International Institute for Machine Learning, Robotics & Artificial Intelligence Research, Ebonyi State, Nigeria Author
  • S. M. U. Ishiwu Department of Industrial Physics, Ebonyi State University Abakaliki, Nigeria Author

DOI:

https://doi.org/10.60787/jnamp.v67i2.364

Keywords:

Dopant, Band gap, Chemical bath, Deposition, Antimony Sulphide

Abstract

Mg-doped antimony sulphide (Sb2S3) thin films were deposited on glass substrates via chemical bath deposition at room temperature, with deposition times of 60 and 120 minutes. Post-deposition, films were annealed at 100°C, 200°C, and 300°C for 60 minutes. Optical properties, assessed using a UV-Vis spectrophotometer (200-1000 nm range), reveal significant influences of deposition time, Mg concentration, and annealing temperature on absorbance, refractive index, and bandgap energy. Films deposited for 120 minutes show higher refractive indices and initial bandgap energies, decreasing more upon annealing than 60-minute films. Increased Mg concentration and higher annealing temperatures enhance refractive indices and cause a red shift, reducing the bandgap energy. Bandgaps range from 3.61 to 3.91 eV, indicating potential for high-power electronics applications. This study underscores the importance of deposition time, doping concentration, and annealing temperature in tailoring Mg-doped Sb2S3 thin films for optical devices.

         Views | Downloads: 37 / 57

Downloads

Download data is not yet available.

References

Radzwan, A., Lawal, A., Shaari, A., Chiromawa, I. M., Ahams, S. T., & Ahmed, R. (2020). First-principles calculations of structural, electronic, and optical properties for Ni-doped Sb2S3. ComputationalCondensedMatter, 24,e00477. https://doi.org/10.1016/j.cocom.2020.e00477

Chen, W., Zhang, J. Z., & Joly, A. G. (2004). Optical properties and potential applications of doped semiconductor nanoparticles. Journal of nanoscience and nanotechnology, 4(8), 919-947. https://doi.org/10.1166/jnn.2004.142

Pei, K. (2022). Recent advances in molecular doping of organic semiconductors. Surfaces and Interfaces, 30, 101887. https://doi.org/10.1016/j.surfin.2022.101887

Mavukkandy, M. O., McBride, S. A., Warsinger, D. M., Dizge, N., Hasan, S. W., & Arafat, H. A. (2020). Thin film deposition techniques for polymeric membranes–A review. Journal of membrane science, 610, 118258. https://doi.org/10.1016/j.memsci.2020.118258

Carlsson, J. O., & Martin, P. M. (2010). Chemical vapor deposition. In Handbook of Deposition Technologies for films and coatings (pp. 314-363). William Andrew Publishing. https://doi.org/10.1016/B978-0-8155-2031-3.00007-7

Min, H. S., Saha, D., Kalita, J. M., Sarma, M. P., Mukherjee, A., Ezekoye, B., & Pathak, T. K. (2020). Nanostructure Thin Films: Synthesis and Different Applications. In Functionalized Nanomaterials I (pp. 71-82). CRC Press.

Christian, N. I., Ekuma, A. P., & Osondu, N. (2022). Phytochemical, Optical and FTIR Studies of ZnSe Thin Films for Solar Energy Applications. IOSR Journal of Applied Physics (IOSR-JAP), 14(01), pp. 25-29. https://www.iosrjournals.org/iosr-jap/pages/v14(1)Series-3.html

Nasr, T. B., Maghraoui-Meherzi, H., Abdallah, H. B., & Bennaceur, R. (2011). Electronic structure and optical properties of Sb2S3 crystal. Physica B: Condensed Matter, 406(2), 287-292. https://doi.org/10.1016/j.physb.2010.10.070

Salem, A. M., & Selim, M. S. (2001). Structure and optical properties of chemically deposited Sb2S3 thin films. Journal of Physics D: Applied Physics, 34(1), 12. https://iopscience.iop.org/article/10.1088/0022-3727/34/1/303/meta

Sun, Q., Fassl, P., Becker‐Koch, D., Bausch, A., Rivkin, B., Bai, S., & Vaynzof, Y. (2017). Role of microstructure in oxygen induced photodegradation of methylammonium lead triiodide perovskite films. Advanced Energy Materials, 7(20), 1700977. https://doi.org/10.1002/aenm.201700977

ISHIWU, S., NWORIE, I., AGBO, P., OJOBEAGU, A., OTAH, P., & ELEKWA, C. (2024). Distinguishing Traits of Thin Films of Antimony-Doped Cadmium Selenide (Cdse/Sb) On Glass Substrate Versus Fluorine Tin Oxide (Fto) Through Spray Pyrolysis: An Investigative Analysis. Global Journal of Pure and Applied Sciences, 30(1), 115-118. https://www.ajol.info/index.php/gjpas/article/view/267570

Abdin, Z. U., Alnasir, M. H., Khan, M. Y., Sajjad, M., Qureshi, M. T., Ullah, A., & Zeb, A. (2019). EFFECT OF Fe DOPANT ON PHYSICAL PROPERTIES OF ANTIMONY SULPHIDE (Sb2S3) THIN FILMS. Chalcogenide Letters, 16(1). https://www.chalcogen.ro/37_AbdinZU.pdf

EZEMA, F. I.; EKWEALOR, A. B. C.; and OSUJI, R. U. (2006) "Effect of Thermal Annealing on the Band GAP and Optical Properties of Chemical Bath Deposited ZnSe Thin Films," Turkish Journal of Physics: Vol. 30: No. 3, Article 3. https://journals.tubitak.gov.tr/physics/vol30/iss3/3/

Nwofe, P. A., & Chukwu, J. N. (2017). Optimisation of doped antimony sulphide (Sb2S3) thin films for enhanced device applications. Journal of Nano-and Electronic Physics, 9(5). http://doi.org/10.21272/jnep.9(5).05007

Srikanth, S., Suriyanarayanan, N., Prabahar, S., Balasubramanian, V., & Kathirvel, D. (2011). Structural and optical properties of chemical bath deposited Sb2S3 thin films. Adv. Appl. Sci. Res, 2(1), 95-104. http://www.pelagiaresearchlibrary.com/

Maghraoui-Meherzi, H., Nasr, T. B., Kamoun, N., & Dachraoui, M. (2010). Structural, morphology and optical properties of chemically deposited Sb2S3 thin films. Physica B: Condensed Matter, 405(15), 3101-3105. https://doi.org/10.1016/j.physb.2010.04.020

Khan, T. M., & BiBi, T. (2012). Compatibility and optoelectronic of ZnSe nano crystalline thin film. Chinese Physics B, 21(9), 097303. DOI 10.1088/1674-1056/21/9/097303 https://iopscience.iop.org/article/10.1088/1674-1056/21/9/097303/meta

Downloads

Published

2024-07-31

Issue

Section

Articles

How to Cite

INTERDEPENDENCE OF DEPOSITION TIME, DOPING CONCENTRATION, AND ANNEALING ON THE OPTICAL BEHAVIOR OF MG-DOPED ANTIMONY SULPHIDE (Sb2S3) THIN FILMS. (2024). The Journals of the Nigerian Association of Mathematical Physics, 67(2), 105-112. https://doi.org/10.60787/jnamp.v67i2.364

Share

Similar Articles

1-10 of 17

You may also start an advanced similarity search for this article.