FIRST PRINCIPLES INVESTIGATION OF HALF-METALLIC MgSrB AND MgSrAl
DOI:
https://doi.org/10.60787/jnamp.vol69no2.536Keywords:
Optical properties, Structural properties, Electronic Properties, MgSrAl, Wien2kAbstract
A comprehensive study on optical, electronic and structural properties for MgSrB and MgSrAl has been conducted using density functional theory (DFT). The computations predict that MgSrB and MgSrAl are half-metallic compounds. The band gap in the up spin channel is 0.826 and 1.263 eV with PBE-GGA and mBJ for MgSrB. While, for MgSrAl, gap in the up spin channel is 0.477 eV with mBJ, and it is a spin-gapless semiconductor with PBE-GGA approximation. The optical properties of MgSrB and MgSrAl alloy were also examined, and the imaginary component of the dielectric function exhibits pronounced absorption peaks within the energy spectrum of 0.149 – 4.993 eV for the both alloys. These peaks result from transitions among different states of ions and atoms in these compounds. In general, our results indicate that MgSrB and MgSrAl half-Heusler alloys are good materials for optoelectronics, solar cells and spintronics.
Downloads
References
Z. Dong, J. Luo, C. Wang, Y. Jiang, S. Tan, Y. Zhang, Y. Grin, Z. Yu, K. Guo, J. Zhang, and W. Zhang. Half-Heusler-like compounds with wide continuous compositions and tunable p- to n-type semiconducting thermoelectrics. Nature Communications 13: 35 (2022).
https://doi.org/10.1038/s41467-021-27795-3.
F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser. Half-Heusler compounds: Novel materials for energy and spintronic applications. Semiconductor Science and Technology 27(6): 1-8 (2012). https://doi.org/10.1088/0268-1242/27/6/063001.
N.O. Nenuwe and O. Omagbemı. DFT based Investigation of Structural, Thermodynamic, Mechanical and Electronic Properties of RuVZ (Z: As, Bi, Sb) Half-Heusler Semiconductors. VNU Journal of Science: Mathematics - Physics 38(3): 24-37 (2022).
https://doi.org/10.25073/2588-1124/vnumap.4705.
J.K. Kawasaki, L.I.M. Johansson, B.D. Schultz, and C.J. Palmstrøm. Growth and transport properties of epitaxial lattice matched half Heusler CoTiSb/InAlAs/InP(001) heterostructures. Applied Physics Letters 104: 022109 (2014). https://doi.org/10.1063/1.4862191.
K. Chen, C. Nuttall, E. Stefanaki, K. Placha, R. Tuley, K. Simpson, J.W.G. Bos, and M.J. Reece. Fast synthesis of n-type half-heusler TiNiSn thermoelectric material. Scripta Materiala 191: 71-75 (2021). https://doi.org/10.1016/j.scriptamat.2020.09.010.
K. Ciesielski, K. Synoradzki, D. Szymański, K. Tobita, K. Berent, P. Obstarczyk, K. Kimura, and D. Kaczorowski. Half-Heusler phase TmNiSb under pressure: intrinsic phase separation, thermoelectric performance and structural transition. Scientific Reports 13: 1592 (2023). https://doi.org/10.1038/s41598-023-28110-4.
S. Ahmad Khandy, K. Kaur, S. Dhiman, J. Singh, and V. Kumar. Exploring thermoelectric properties and stability of half-Heusler PtXSn (X = Zr, Hf) semiconductors: A first principle investigation. Computational Materials Science 188: 110232 (2021).
https://doi.org/10.1016/j.commatsci.2020.110232.
F. Casper, R. Seshadri, and C. Felser. Semiconducting half-Heusler and LiGaGe structure type compounds. Physica Status Solidi (A) Applications and Materials Science 206: 1090-1095 (2009). https://doi.org/10.1002/pssa.200881223.
W. Wong-Ng, and J. Yang. International centre for diffraction data and american society for metals database survey of thermoelectric half-heusler material systems. Powder Diffraction 28: 32-43 (2013). https://doi.org/10.1017/S0885715612000942.
S. Dubey, J.A. Abraham, K. Dubey, V. Sahu, A. Modi, G. Pagare, N.K. Gaur, DFT study of RhTiP half Heusler semiconductor: Revealing its mechanical, optoelectronic, and thermoelectric properties, Physica B: Condensed Matter 672: 415452 (2024).
https://doi.org/10.1016/J.PHYSB.2023.415452.
A. Azouaoui, A. Harbi, M. Moutaabbid, M. Idiri, A. eddiai, N. Benzakour, A. Hourmatallah, K. Bouslykhane, R. Masrour, and A. Rezzouk. First-principle investigation of LiSrX (X=P and As) half-Heusler semiconductor compounds. Indian Journal of Physics 97:
-1737 (2023). https://doi.org/10.1007/s12648-022-02522-w.
N.O. Nenuwe, J.O. Umukoro, and E.A. Enaibe. First-principles calculations to investigate structural, electronic, magnetic, thermodynamic, and thermoelectric properties of RbSrZ (Z = Ge and Sn) d0-d0 half-Heuslers for renewable energy applications. Kuwait Journal of Science 52: 100300 (2025). https://doi.org/10.1016/J.KJS.2024.100300.
N.O. Nenuwe, and J.O. Umukoro. TB-mBJ Predictions of Thermoelectric and Optical Properties of Half-Heusler RuVBi alloy. FUPRE Journal of Scientific & Industrial Research 7: 55–70 (2023). http://fupre.edu.ng/journal.
F. Parvin, M.A. Hossain, I. Ahmed, K. Akter, and A.K.M.A. Islam. First-principles calculations to investigate mechanical, optoelectronic and thermoelectric properties of half- Heusler p-type semiconductor BaAgP. Results in Physics 23: 104068 (2021).
https://doi.org/10.1016/j.rinp.2021.104068.
Z. Dong, J. Luo, C. Wang, Y. Jiang, S. Tan, Y. Zhang, Y. Grin, Z. Yu, K. Guo, J. Zhang, and W. Zhang. Half-Heusler-like compounds with wide continuous compositions and tunable p-to n-type semiconducting thermoelectrics. Nature Communications 13: 35 (2022).
https://doi.org/10.1038/s41467-021-27795-3.
G.K.H. Madsen, J. Carrete, and M.J. Verstraete. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Computer Physics Communications 231: 140-145 (2018). https://doi.org/10.1016/j.cpc.2018.05.010.
A. Jabar, S. Benyoussef, and L. Bahmad. A first principal study of the electronic, optic and thermoelectric properties of double perovskite K2CuRhX6 (X = Cl or I). Optical Quantum Electrons 55: 839 (2023). https://doi.org/10.1007/s11082-023-05130-y.
N.O. Nenuwe, and A.S. Yebovi. Predictive analysis of a new FeVTe alloy from first principles: An excellent choice for thermoelectric applications. Computational Condensed Matter 38: e00882 (2024). https://doi.org/10.1016/j.cocom.2024.e00882.
N.O. Nenuwe, and N.O. Agbawe. Ab initio predictions of thermoelectric, mechanical, and phonon characteristics of FeTiSe half-Heusler compound. Current Applied Physics 53: 132- 141 (2023). https://doi.org/10.1016/j.cap.2023.06.008.
A. Abada, N. Marbouh, and A. Bentayeb. First-principles calculations to investigate structural, elastic, electronic and magnetic properties of novel d0 half metallic half Heusler alloys XSrB (X= Be, Mg). Intermetallics 140: 107392 (2022).
P. Blaha, K. Schwarz, P. Sorantin, and S.B. Trickey. Full-potential, linearized augmented plane wave programs for crystalline systems. Computer Physics Communications 59: 339-415 (1990). https://doi.org/10.1016/0010-4655(90)90187-6.
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz. WIEN2K, An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties. Vienna University Technology, Vienna, Austria (2001).
P. Kepple, and H.R. Griem. Improved stark profile calculations for the hydrogen lines Hα, Hβ, Hγ, and Hδ. Physical Review 173: 317 (1968). https://doi.org/10.1103/PhysRev.173.317.
C.C. Kim, J.W. Garland, H. Abad, and P.M. Raccah. Modeling the optical dielectric function of semiconductors: Extension of the critical-point parabolic-band approximation. Physical Review B 45: 11749 (1992). https://doi.org/10.1103/PhysRevB.45.11749.
R. de L. Kronig. On the Theory of Dispersion of X-Rays. Journal of the Optical Society of America 12: 547-557 (1926). https://doi.org/10.1364/josa.12.000547.
E. Haque, and M.A. Hossain. Structural, elastic, optoelectronic and transport calculations of Sr3SnO under pressure. Materials Science in Semiconductor Processing 83: 192-200 (2018). https://doi.org/10.1016/j.mssp.2018.04.037.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 The Journals of the Nigerian Association of Mathematical Physics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.